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ABSTRACT

While the total number of theoretically posgsible quadruped gaits
is quite large, only six gaits have the property that they can be executed
while keeping at least three feet on the ground at all times. These gaits,
called creeping gait¥, seem to be well suited for low speed locomotion
since, they permit a quadraped to remain statically stable during most of
a locomotion cycle. A mathematical analysis shows, however, that for
only three of the gix creeping gaits is it possible to place the feet of an
animal or machine so that it is statically stable at all times. Furthermore,
among these three, there exists a unigque optimum gait which maximizes

static stability. This gait corresponds to the normal quadruped crawl

favored by miost animals for very low speed locomotion.
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INTRODUCTION

The discrete aspects of legged locomotion have drawn the attention
of a number of investigators who have all been interested in the problem
of identifying and class’fying the natural and theoretically possible patterns
of footfalls or gaits used by terrestrial animals for locomotion [1,2,3,4].
More recently, improvements in technology have lead to the development
of artificial legged locomotion systems and have raised certain questions
relating to the control and stability of such machines [ 5,6,7,81. This
paper is directed toward the formulation and solution of a particular
stability problem which arises in connection with both natural and artificial
quadrupeds. Specifically, the question to be rcsolved is the following:
Among all of the theoretically possible quadruped gaits, which ones have
the property that the feet in contact with the ground can be placed so that
the quadruped is statically stable at all times? These gaits are of particular
importance for both animals and machines since they represent modes of

locomotion which can be employed for arbitrarily slow motion.

The analysis to follow makes use of an extension of the finite state
model introduced in [ 3] to include the basic kinematic parameters assoc-
iated with the geometrical aspects of a quadruped machine or animal. The
principal result obtained is that only three quadruped gaits are suitable
for very low speed locomotion and that one of these possesses stability

properties superior to the other two. This gait is the typical quadruped

crawl recognized by Muybridge [ 21 as being the normal gait employed by

both natural quadrupeds and human beings for very low speed four-legged

-2-




locomotion.

SUPPORT FATTERNS AND STATIC STABILITY

Due to the high degree of complexity of natural and artificial loco-
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motion systems based upon articulated limbs, it is necessary to make
certain simplifying assumptions in order to obtain some concreie results
relating to stability. For the purposes of this paper, only steady state
constant speed locomotion in a straight line over a horizontal plane support-
ing surface with the legs of the system cycling periodically in both space
and time will be considered. The legs of the systems to be investigated
will be idealized in the respect that the foot of each supporting leg will be
assumed to touch the supporting surface at a single point called the contact
peoint. In addition, it will be required that the force exerted by any leg at its

contact point be directed into the ¢ - porting surface and that no moments

feet will not be treated. These assumptions and constraints are formalized
in the following definition which imposes some additional requirements.
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‘ be applied by a leg to the support plane; i.e., locomotion with grasping
=

e

b

k"

All of the results to follow are obtained with respect to this mathematical
=

model.

Definition 1: An ideal legged locomotion machine is a rigid body

to which are attached a specified number, n, of massless lega. The length

of each leg is arbitrarily controllable. Each leg contacts the supporting

surface at a point and can exert an arbitrary force directed into this surface.

-
iz e

Arbitrary moments can be applied to the body by any leg subject only to the
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constraint that no moment be applied to the supporting surface at any leg

contact point.

Given the contact point for each supporting leg of an ideal legged

locomotion machine, a support pattern [ 1]for any phase of a gait is defined

as follows:

Definition 2: The support pattern associated with any phase of a

given gait of an ideal legged locomotion machine is the minimum area convex
poiat set in the support plane such that all of the leg contact points are

contained,

From this definition it is clear that when m feet of a machine are in
contact with its support plane, the support pattern i1s a polygon of not more
than m sides. Figure 1 displays a sequence of support patterns for the
previously mentioned crawl gait 2, 3]. The arrows on this figure show the
total motion of the center of gravity of the associated machine during each
phase of its motion. This gait alternates three and four feet on the ground
80 its support patterns are alternately triangies and quadalaterals.

Support patterns are related to gait stability for ideal legged loco-
motion machines by the following definition and theorem:

Definition 3: An ideal legged locomotion machiac is statically stabl-

at time t if all legs in contact with the support plane at the given time remain
in contact with that plane when all legs of the machine are fixed at their
locations at time t and the translationzl and rotational velocities of the
resulting rigid body are simultaneously reduced to zero.

-4-




Theorem 1: An ideal legged locomotion machine supported by a
stationary horizontal plane surface is statically stable at time t if and
only if the vertical projection of the center of gravity of the machine onto

the supporting surface lies within its support pattern at the given time.

Proof: If a machine is not statically stable at time t then, due to
the rigid tody assumption and the character of the legs of an ideal legged
locomotion machine, there must exist an overturning moment resuiting
solely from gravitaticnal acceleration. Elementary mechanical consider-
ations show that such a moment exists if and only if it is possible to draw
a line in the support plane which passes through at least one leg contact
point and which separates the vertical projection of the center of gravity
onto that plane from the contact points of all other lrgs, But the set of all
such lines is just the set of all tangents to the support pattern at time t.
Consequently,since all contact points are interior to the support pattern
and this pattern is a convex point set, a machine is statically stable at
time t if and only if the ver.ical projection of the center of gravity is also

interior to the support pattern,

CREEPING GAITS AND STABILITY MARGIN

While Theorem 1 provides a necessary and sufficient condition for
the static stability of an ideal machine, a real mackine will be subjected to
various types of disturbances and consequently may not remain upright
even though the conditions of this theorem cre satisfied at all times. It is
therefore desirable to introduce a notion of relative stability which provides

5=
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some indication of the ability of a machine to resist disturbing influences.

The following dafiniticn provides such a measure:
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Definition 4: The magnitude of the static stability margin at time ¢t

for an crbitrary support pattern is equal to the shortest distance from the

vertical projection of the center of gravity to any point on the boundary of

the support pattern, If the pattern is statically stable, the stability margin

is positive. Otherwise, it is negative.
Thir definition leads to the following theorem:

Theorem 2: I'or an idea! legged locomotion machine, the minimum
R number of legs required to achieve a gait with a strictly positive static
stability margin at all times is equal to three If the time required to
transfer a leg contact point to a new position is greater than zero, the

number is four.

Proof: If the stability maigin is greater than zero, then the area

of the support pattern must also be greater than zero. This is possible

o R o——

only if the support pattern has at least three sides, implying at least three

feet on the ground. If no time is required for movement of a leg contact

point from one position to another, then successive overlapping triangles can

be utilized to contain a moving center of gravity at all times. However, if

the leg transfer time is greater than zero, whenever any leg is lifted from

the supporting surface, three other legs must be in contact with that surface
: implying at least four legs altogether. The sufficiency of four legs is esta-

blished by the support patterns for a crawl shown on Figure 1.

o a4 st
v a e e by .
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For quadrupeds, it is evident that all gaite which satisfy Theorem

2 are of the following type:

©

Definition 5 {Tomovic [ 97): A gait of an n-legged machine is a

creeping gait if every support pattern involves at least n-1 contact points,

Creeping gaits may be either singuilar or non-singular depending

upon whether or not simultaneous lifting and placing of two or more feet
ever occurs { 3]. Since any singular gait can be obtained as the limit of

cume non-sirgular gait [ 3], the analysis to follow will concentrate on

non-singular gaits.

While it can be shown that there exist a total of 5040 theoretically
possible non-singular quadruped gaits { 37, only a small number of these

qualify as creeping gaits. The next theorem establishes the number of

such gaits and identifies them:

Theorem 3: There are exactly six non-singular quadruped creeping
gaits.

Proof: A non-singular quadruped gait always involves exactly eight
phases since no two feet are ever lifted or placed simultaneously [3].
Since a creeping gait never has more than one foot off of the supporting
surface, if it is non-singular, its support patterns must involve alternately
three and four feet un the ground. Thus, if the feet are numbered 1,2,3,4
as shown on Figure 1, the succession of supporting feet is uniquely deter-
mined by a permutation of these numbers which specifies the order in

which feet are placed; e.g. the crawl of Figure 1 corresponds to the




termutation 1432, Since the first number in such a permutation is
H arbitrary, it can always be chosen to be equal to 1. With this choice,
the five other possible permutations are 1423, 1342, 1324, 1234, 1243,

Each of these is illustrated on Figure 2.

A KINEMATIC GAIT MODEL

In [37, a 2n-1 parameter model for any gait of a n-legged loco-
motion machine is introduced. This model, called a ''gait formula",
completely describes the sequential characteristics of a gait, but omits
all of its spatial properties. The following definitions extend the idea of
a gait formula to include certain kinematic aspects of locomotion.

Defirition 6 (Hildebrand [ 17): ‘The stride length of a gait is the
dgistance, A, by which the body of a locomotion machine is translated

during any complete leg cycle.

Definition 7: ‘The dimensionless foot pesitien, (xi,yi), for leg i of

a legged locomotion machine is a pair of coordinate values which specifies

the position of the contact point of any supporting leg. The origin of the xy
coordinate system is the center of gravity of the machine. The x coordinate
axis is aligned with the direction of motion with positive x directed forward.
The y coordinate axis is normal to the x axis and is oriented so that it is
positive on the left side of the machine. The scale of the x and y coordinate

axis is chosen so that A = 1,

Definition 8: The dimensionless initial foot position, (Yi’ 6.), is the
i

-8-

ey




value for the pair XY, which exists at the time leg i first contacts the

supporting surface during any locomotion cycle.

The 'gait formula" defined in [ 371 involves two types of parameters.
The first of these is the duty factor, Bi’ which expresses the fraction of
time that leg i is in contact with the supporting surface during one complete
cycle of locomotion. The second is the relative phase, ﬁi, which indicates
the amount by which the motion of leg i lags the motion of leg 1 expressed
as a fraction of the time required to complete one cycle of locomotion.
These parameters together with the initial foot position variables are
cambined in the following definition:

Definition 9: A kinematic gait formula, k, for an n-legged loco-

motion machine is the {4n-1)-tuple

k = (Bloazt---BnoYloYZ:-o'Yns 61a 62:'-- Gn.¢2,¢3.--.¢n) (1)

The following theorem establishes the extent to which a kinematic

gait formula determines the motion of a locomotion machine.

Theorem 4: A kinematic gait formula compietely specifies the
position of the supporting feet and thevertical projection of the center of
gravity of an ideal legged locomotior machine in both time and space up

to a multiplicative factor of T in time and )\ in space.

Proof: If t' stands for a time variable measured in arbitrary units

and 1 is the cycle time [3] required for one complete locomotion cycle

-9-
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measured in the same units, then a dimensionless time variable can be
defined as t = t'/1. If t = 0 is chosen to correspond to the time when leg 1
first touches the supporting surface, then since *. is a spatially normalized

variable

xl(t)=ylwt O<t< B 2)

Since leg 1 does not touch the ground during 8 < t < 1, xl(t) is undefined
for this period of time. Since t is normalized, the period of xl(t) is equal

to 1 so (2) determines xl(t) for all t such that leg 1 is i1 a supporting phase.

For any other leg i,

xi(t} =y (t—ﬁi) . < t< 0. +8, 3)

and xi(t) is undefined for 0i+ B, <t< ¢i+ 1. Again, since the period of leg i
is also equal to 1, (3) determines the dimensionless leg position for any

supporting leg.

Since the motion of the machine is entirely along the x-axis and the
leg positions are required to be periodic in space, Y= 6i whenever x, is
defined. Thus,,k determines (xi,yi) for all supporting legs for all t. More-
over, if (xo,yo) is the dimensionless location of the vertical projection of
the center of gravity of the machine relative to its initial positon on the

support plane, then

(x5 ¥g) T (t,0) (4)

so the center of gravity location is also determined. Finally, multiplication

-10-




of ar.; dimensionless pair (xi,yi) by A produces positions in the units of A,

OPTIMUM KINEMATIC GAIT FORMULAS

The crawl gait shown on Figure 1 is described by the kinematic gait

formula
_ 11 11 11 1 1 11 11 31
- k—\l’l’IZ’l’l’ lroio:Z,"Z:Z"ZQ'Z",Z:Z/ (5)
’. While examination of this figuire shows that this gait possesses a positive
stability margin at all times, it is possible that some other kinematic gait
:: formula would produce a more stable crawl. It is useful, therefore, to
‘ attempt to find optimum gait formulas for all six of the creeping gaits of
gﬂ Figure 2. The following definitions make this notion precise.
i: Definition 10: The dimensionless longitudinal stability margin at
3
time t for an arbitrary support pattern asscciated with a kinematic gait
f formula, k, is denoted by s(t, k) and is equal in magnitude to the shortest
p: distance along the x coordinate axis from the center of gravity of a loco-
motion machine to an edge of its support pattern. If the pattern is siatically
stable, the stability margin is positive. Otherwise, it is negative.
3 *
- Definition 11: A kinematic gait formula, k™, for a given gait
matrix [ 3], G, is longitudinally optimum if
B
max min  s{t,k) = min s(t,k¥) = s*(G) (6)
s ke KG te [0,1] te[0,1]
£3
.
7 where KG is the set of all gait formulas which imply G [3]. The function
3 -11-
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3%(G) is the optimum dimensionless longitudinal stability margin for G.

The connection between s%*(G) and static stability for quadruped

creeping gaits is established by the following theorem:

Theorem 5: Let G be the gait matrix for a quadruped creeping
gait and let KG be the set of all kinematic gait formulas which imply G.

Then there exists a ke KG such that the machine associated with k possesses
a strictly positive static stability margin at all tirmes if and only if s*(G) >0.

Moreover, when such a k exists, it satisfies the constraints: &6, >0, &6 >0,

1 3
62 <0, 64< 0.

Proof: Suppose the condition on the & variables is satisifed. That
is, the machine has two feet on each side of its centerline. In this case,
the projection of its center of gravity is in the interior of its support pattern
and it has a strictly positive static stability margin if and only if its longi-
tudinal stability margin is strictly positive. But this is satisfied at all
times if and only if s%*{(G) >0, Now suppose the condition on the § variables
is not satisfied. Then there must exist some phase of the gait such that the
center of gravity of the machine lies either on the right or left boundary of
the support pattern or entirely nutside of it. Consequently, independently
of s*(G), such a gait will fail to have a strictly positive static stability
margin at some time in any complete locomotion cycle, Thus, k exists if

and only if s*(G) > 0 and & <0, 6§ <0,

>0, 63>0, 62 4

1

~12-
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OPTIMIZATION OF THE CRAWL GAIT

Examinat.on of Figure 1 shows that, due to the forward motion of
the center of gravity of a locomotion machine, the minimum value of the
longitudinal stability margin assoclated with any support pattern of any
gait occurs either at the moment the pattern is established or at the end
of the interval in which the pattern exists. In addition, if the minimum
occurs at the beginning of the interval, it is associated with a line at the
rear of the support pattern while if it occurs at the end, it is associated
with a line at the front of the pattern. Thus, since a total of eight support
patterns comprige a non-singular crawl gait, there are eight critical times
at which the minimum longitudinal stability margin may occur. These are
all indicated in the following set of eight linear equations which establish

the position of the critical feet at the times indicated.

t.: Leg 4 lift-off

1
X, = Y3*'93- 04— B4 (N
X, = Y2+ ﬂz- 94- 84 (8)
tZ: leg 4 touch-down
x, = Y2+ 02- 54- i (10)
t3: Leg 2 lift-off
x; = Yyt 8- 8- 8, (11)
Xy = Yyt 0- 8,41 (12)

-13-




t,: Leg 2 touch-down

4
= - (3
xl Y1 ¢2 (13)
= - 14
X, = Y, H0,- 0, (14)
t5: Leg 3 lift-off
- v - - + 15
X, =Y, 4, Bt 1 (15)
= + - - + 16
X% Yy, 9, 9,-B,%1 (16)
t6: Leg 3 touch-down
X, % ¥,- 03 (17)
= - 1
X, YZ+ @2 ¢3 (18)
t7: Leg 1 lift-off
= - 1
X3 T Ygt 03 81 (19)
Xy T Yyt 0, By (0)
t8: Leg 1 touch-down
= + 6 -
Xy = Yt 8,01 (21)
Xy = Yyt ¢3- 1 (22)

In order to calculate the longitudinal stability margin at each of the
above times, it is necessary to assume some values for the y-coordinate
of each leg. Since all natural quadrupeds possess right-left symmetry, it
will be c~~venient to make thic assumption here. In addition, to simplify
the analysis still further, it will also be assumed that the spacing between
the front legs in the y direction is the same as for the rear legs. Thus,

the class of gait formulas, KG, to be considered satisfy the constraint

-14-
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(23)

With this constraint, the longitudinal stability margin is independent of §.
In particular, for the crawl gait, from Figure 1 and eq. (7) and (8), at
t=t), the horizontal distance from the center of gravity to the rear of the
support pattern is just

TX2T %,

2

_ . VY \
£l = = 7Yy vyt 9y 9,- 20,4 28, (24)

Att= ty the distance to the front of the support pattern is

x.+x

- 1 2 - 1 ' 1 -
fz(k) = > 51 Y1+ Y2+ 02- 2¢4- 1 } 25)
Consequently
min x(t,k) = min fi(k) {26)
te[tl,tz] ie(1,27

Continuing this analysis for the other support patterns, and associating
fi(k) with conditions at t = ti’ from eq. (11) through (22), the appropriate

functions are:

s A LD W 7

X3 Xy g
- e —— : — }-\7 - - - - Y
k) = —3 2 1Y3" Yy 93 8t 28,428,014 @7
x.+tx
R Wi W
folk) = — 3 1YYt 0, 2”2} (28)
-X - X
I U S ;
£ () = — 2{ Y, Vgm0 20,428, 2 29)

-15-
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x.+tx
Lx — 1 Z - 1 { h
3 folk) = —5— = 3{ntv,*9,- 2”3} (30)
-X X
R S B L VI
f2(k) = 3 717 V3" Yy By 0.t 28, } (31)
Xt %y 1
fgllk) = === S {v, vyt 8,40, 2} (32)

Finally, by analogy to (26)

min s(t,k) = min f.(k) = £ (k) (33)
L te [0,1] ie{1,2,...8} ° °

and k¥ is found by maximizing the criterion function fo(k) over KC'
’)

Referring again to Figure 1, it is evident that increasing the fraction

of time, Bi, that leg i spends in contact with the supporting surface never
reduces the static stability margin of a gait. Thus, for any gait, fo(k) is
non-decreasing in Bi and at least one k* will involve Bi= 1 for all i, But

this is impossible for a non-singular gait { 3]. To avoid this difficulty,

the further restriction will be placed on KG that
BI=BZ=B=B4=B (34)

i.e., only regular gaits [ 3] will be considered. The criterion function

fo(k) will then be optimized for a fixed value of 8.

Even after the parameters 8i are fixed according to (34), fo(k)

remains a nonlinear function of seven variables to be minimized subject

-16-
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to the inequalities

¢, >1-8 (35)
g, > B,+(1-8) (36)
B >0, >0,+(-8) (37)

which are dictated by the sequence of support patterns involved in a crawl,
Problems of this type fall within the domain of nonlinear programming [ 1¢]
and are tyoically very difficul: to solve. In this particular case, however,
a solution has teen found by means of relatively straightforward iterative
procedure. Rather than recording the details of this calculation, the

results are presented as a theorem:

Theorem 6: If § =6 = ~6_= -6

= 8 » 4='6, then for 1 > 8 > 3/4, any longi-

tudinally optimum kinematic gait formula for a regular crawl gait must be

of the form
B.B-3 ) = kt  (38)
/

where

az%, 5§ >0 (39)

G = (40)
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The longitudinal stability margin for this gait is given by
s*¥(G) = 65- 3/4 (41)

i Proof: First of all, it is clear that the constraints imposed by
(35), (36), and (37) are satisfied. Then, substituting k* into (24), (25),

and {27) through (32),

£, (k¥) = B-% (42)

; £,(c) = a -§+% (43)

f0k%) = a -2+ ¢ (44)
3

; f k%) = B~ 7 (45}
, 3

fs(k*) = B- 2 (46)

£,06) = a -§+ % (47)

: f7(k*) = a -%+ % (48)
3

z fglick) = B~ 3 (49)

Thus, the criterion function fo(k*) is determined either by fl’ f4, f5, and
f8 or by fz, f3, f6' and f7. To determine which of these cases applies, it

is necessary to consider the allowed range of values for the arbitrary

constant a. A lower bound on a can be obtained from the requirements

x, () > x,(t) (50)
and
Xz(t) > x4(t) {51)
~-18-
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imposed by the necessity of avoiding interfercnce between front and rear
feet. From Figure 1 it can be seen that the minimum value for x, (t) - X, (t)

occurs att =t, at which time

6

x, (t) - x5 (t) = Yy ¢3 -y, = 2a-82>0 (52)
SO

a > ‘g‘ (53)

and fori =2,3,6,7

£ (%) > (54)

1
4
Solution of (51) yields identical results. On the other hand, fori =1,4,5,8,

since B < 1,

1

It {ollows, therefore, that the longitudinal stability margin is determined

by fl, f4, fs, and f8 for all allowed values of a.

Since (42), (45), @6) and (49) all yield the same values for the k

given by (38), this value is optimum unless there exists some vector, Ak,

such that
*® + x® el
fo(k Ak) > fo(k ) (
This in turn is possible if and only if fl’ f4, f5, and f8 can all be increased

simultaneously, To determine whether or not this is possible, from {24),

{28), (29), and (32), substitution of k* + Ak for k* results in the relationslins




I
3
£
g g
. . \
{ T = - - - + 57
% B = 5 =By, Byy- 80,- AP 4200, (57)
3 1 |
1 - = . l 5
\ § Af4 5 AY1+ AY4+ A04 2A02 [ (58)
§ A - 1y - Ay, - B + 280, (59)
L 5° 20 0V YT Yy 3
_ 1 )
Mg = 54 0Y,+ by + B9, + 0P, { (60)
] waere
E
M, = £ (k¥ + 8k) - f, (k¥) 61)

Since ﬂ3= B8 in (39), the left hand side of (38) is satisfied as an equality,

Consequenily, it is necessary in [57) through (60) that

A¢3 <0 (62)

8 - 1 in (38), (36) is also satisiied as an

L. kewise, since §_= L and 54 >

2 2

equality with the consequence that

08, = A¢4+ €, e >0 (63)

Z

must also be satisfied in the evaluation of (57} through (60).

Substituting {6!.} into (57) through (60) and requiring that Afi >0,

i=1,4,5,8, results in the expressions

-AYZ Yy - Aﬁ3 4 M,; - & >0 (64)

Ay1 - Ayé + A¢3 - 2¢ >0 (65)

_M-l - _lgy4 + 2Ai§3 - A¢4 >0 (66)

AYZ + AY3 + L\ﬂ3 + A64 1 e > C (67)
-20-
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Addition of these four equations produces the relation

289, - 25 >0 (68)

or

A¢3 >e >0 (69)

But this is a contradiction since (62) requires A¢3 < 0. Consequently, nc

bk exists which simultaneously increases { fs, and .f8 so (38) is

1) £4'
optimum. The G matrix associated with (38) can be constructed from the

algorithm given in [37.

To show the uniqueness of (38), it is sufficient to equate (64) through

(6'7) to zero. In that case, (69) becomes

B9, = €3> 0 (70)

In view of (62), this implies

M, = =0 (71)

which in turn requires that A¢4 and 592 also equal zero in order for (64)
through (67) to be satisfied as equalities. Thus,there is no Ak # 0 such

that fo(k* + Ak) = fo(k*) and (38) !s therefore unique.

OPTIMIZATION OF OTHER CREEPING GAITS

In the appendix to this paper, equations alalogouas to (24) through {32)
are developed for each of the {.ve other creeping ga:ts. These equations can
be subjected to an optimization process in the same way as the crav.i gait
was treated.
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The results of such an optimization are detailed in the appendix and
summarized in Table I. This table provides the basis for the following

theorem:

Theorem 7: For any specified value of the duty factor, 8, in the

2
range — < B < 1, the optimum dimensionless longitudiral stabili y margin

4
for a regular crawl is greater than for any other regular gait, Moreover,
there are only two other non-singular creeping gaits, 1342 and 1243, which

possess kinematic gait formulas with a strictly positive value for their

minimum longitudinal stability margin for any 8 < 1,

Proof: Table I proves the first part of the theorem and the second
part with respect to regular gaits. For irregular gaits, it is sufficient to
note that since the minimum longitudinal stability margin is non-decreasing
in Bi’ if

= 2
b~ max B (72)
ther. the regular gait with g = Bm will be at least as stable as the associated
irregular gait. It follows, therefore, that since the stability margin of

regvlar kinematic gait formulas for the gaits 1324, 1432, and 1234 is

bounded by

s¥(G) = B-1 <0 (73)

this bound also applies to the irregular gaits.
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DISCUSSION OF RESULTS

The information contained in Table I is in dimensionless form. In

e e L e

absolute form, in any units, since s*¥(G) is normalized to A\, the denormal-

ized optimum stability margin is given by

gt ppc

] x, = As*(G) (74)

This shows that it is desirable to make A as large as possible consistent with

; satisfying the reguirement for no interference between legs expressed by

‘ (52). Since the variable a in this expression is normalized to A while B is
not, if xa is the denormalized value of a, (52) becomes

. Zxa -8 >0 (75)

3

so the maximum value for A is

2x
2
B

(76)
The corresponding value for a is

X
a

_ 8
a-T—Z (77)

m

so from (38}, the unique regular crawl gait which maximizes the denormal-

PP AR 30 O T AN T AR D 1%,
] £ " v

ized minimum longitudinal stability margin is defined by

1 1

2'8'8-2/

k = '\8,8,8,8,8,8,0,0,6,"5,6,'6, (78)

which involves only the twou parameters 6 and 8. This gait is illustrated by

Figure 3.
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Examination of Muybridge's photographs [ 2] shows that Figure 3

corresponds closely both in space and time to the normal slow quadruped
walk. The only important exception is that since (78) requires that each

. ‘ rear foot be placed in the footprint of the foot ahead of it at precisely the

E time the front foot is lifted, living quadrupeds employ 8 < 3/4 so that the
front foot is lifted a short time before the rear foot is placed in order to
provide the necessary clearance between feet., The rear foot is sometimes
placed somewhat ahead of the front faot footprint to compensate for the

early lifting of the front feot [ 1]. Apparently, for moderately low speed

i At

locomotion, this solution to the foot interference problem is more satis-
factory for the majority of living quadrupeds than the alternate solution of

shortening the leg stroke of the optimum crawl defined by {78). It appears

that a true crawl is generally used only for grazing and for other very low

Ty

- syeed activities [17.

Hildebrand [ 11] has ob. erved that, apparently, no living quadruped

A LR W ekt ko

3 uges the gait 1324 (gait number 5 in his classification scheme) and has con-
jectured that this might be due to the poor stability properties of this gait.

The analysis presented here confirms this hypothesis. It seems likely that

it A e

the gaits 1432 and 12324 are also unused for the same reason. The authors
are unaware of any observations of the gaits 1342 and 1243 in use by a living

quadruped even though these gaits are stable for a sufficiently large duty

factor. It may well be that th. optimality of the crawl has caused it to be
adopted as the unique gait utilized by natural quadrupeds for very low speed
locomotion.
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SUMMARY AND CONCL USIONS

The results obtained in this paper show that there exists a unique
solution to the problem of chocsing a gait to optimize the stability of low
speed quadruped locomotion. This gait corresponds essentially to the low
speed gait preferred by most natural quadrupeds. The analysis excludes
certain types of locomotion due to assumptions on the geometry of the
4 machine or animal. In particular, the machine is not allowed to drag a

stabilizing tail as kangaroos and some legged reptiles do [12], nor is it

TR 30 B

permitted to overlap its feet as would be possible if the front pair of legs

were spaced more widely or more narrowly than the rear pair.

While the conclusions reached in this paper are obtained with respect

(L 2O b, ¥d A0 g

to an idealized model, the model appears to be sufficiently close to reality

g

to permit qualitative extrapolation to real locomotion systems. Obviously,

such characteristics of real systems as the non-zero mass of legs could

. v Saas 0 "
LA PE AR L K

be included in a more camplicated analysis. Such analysis should probably

ER AT AR

be carried out for particular machines whenever it is important that the

SN AT

greatest possible degree of static stability be achieved.

The type of analysis presented here could be readily extended to

TR TN (R

a study of insect gaits, It would be interesting to determine if i1sects also

E::

utilize optimally stable modes of locomotion. It appears that stability

j analysis of biped gaits requires the use of dynamic models which are necas-
i sarily more complicated than the kinematic model defined in this papur.
‘; The same is true of higher speed quadruped gaits which typically contzi.:

statically unstable phases [ 17.
-25-
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Footfall Stability
Sequence Margin
3
1432 B - I
3 5
1342 > B - Y
3 5
1243 3 B - Y
1432 B-1
1324 B -1
1234 -1

8 = duty factor

Table I: Optimum. Dimensionless Longitudinal Stability
Margins for Regular Quadruped Creeping Gaits
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4° 2
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A) LABELLING OF FEET

B) SEQUENCE OF FOOT LIFTING AND PLACING.
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1243
(stable)
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(stabie)

G2
Crawl - 1423
{stable)

=4

4 4————02
1324

(unstabie)

Figure 2: QuaJdruped creeping gaite
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§ APPENDIX

i Stability Margin Optimization

3 Gaits1342and 1243

i The foot position equations for gait 1342 are as follows:
.

t.: Leg 3 lift-off

: 1
5 = B+ 1 79
ST T (79)
. Xy =Y, t@, -0 -B (80)
: tz: Leg 3 touch-down
X =Y (81)
g . o
A PR (82)
i t,; Leg 4 lift-off
& i o
g Xy = Vgt Py-9,-pt ] (83)
£
ai = - -
X = Yt 9y, P (84)
£
% t4: ieg 4 touch down
& X F Y9y (85)
%A
%— Xp = Yot d, eyt (36)
1 ¢ : Leg 2 lift-off
g ‘5. o]
= + -p,-B +1 (87)
& X3 7 V3T 037%,
Xg = Vgt %y Al (88)




4 t6: Leg ¢ touch-down

X, = Y]-cpl (89)

LA
s stow i o Sy M F

Xy T v PP, (90)

The equations for tsy and t8 are the same for 21l gaits and are given by

(19), (20), (21), {22). Combining the foot position equations appropriately

leags to the s*ability margin equations-

-X, "X, ,{
fl = = 5 47y w4+2cp3+25—1 (91)
x]+x2 1
£, = > =3 <‘Y1+Y2 Gy 20,1 } (92}
X, "X, 1
f3 = 5 =35 {—YZ"Y:& v, q>3+2cp4.28-l} {93)
X . +x
o 1 /2 1 [
E i, > = 3 \Y1+Y2+ 9, -29,-1 } (94)
, XXy )
£5 = > =3 {Y -y -cp3-ep +2 ch+ZB 2} (95)
X, +x
1 4 _ 1/ ..
f, = 5 =3 {{1* AR Zp, } (96)

The other two stability margin «quations are again the same for all gaits

o m———— o .

and are given by (31) and {32).
Examination of the above equations shows that the unique

optimum kinematic gait formula for this gait is given by

& A - Y 2
k= (5»5.3%3- s Y ’{7-D+2,-—Y1+ 33.

™~ e

: 8,08, 5,‘!}1;;‘ B ZB 1)

(37)

[T

For this gait formulza, if ¥ and YZ are sufficiently large, then the long:-

I

tudina' stability margin is determired by

-ii-
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s*(G):f=f=f=f=%B- "

1 3 & 8

Since reiflection of gait 1342 about an axis paralle! to the centerline of

its support patterns produces gait 1.34 (Figure 21, (98) applies equaliy

IR W AR N S P A T T LSRR 5 i S tww‘;’:‘%gq,.

well te either gait.

g

Gaits 1234 znd 1432

e
9.

t'or gait 1432, the stability margin equations zre:

.;rV\y,x‘.W/ SN
'

i
f = - - -0 _N‘

: 1 3 { Y, Y © 4t 2w4+28 > (99)
z }
5 €2= E(Y!«k{TQ Zr" -1 > (100)
3 \
; [
- fzz = Y, -Y -3 42@ +28 -2 (101)
: 37 2
5 1 \
- = - -7" - 2
2 £ z{ 1 “oyml g (102)
%
= 1
f = - - 25 -
£ 2'5 2{ ¥q" 4 %3¢ 4+ 2\—p2+ B 2} (103)
2
£ A S
E ) <\ T Y, (104
A
?‘ and f7 and f8 are again given by {31) and (32). An coptimum kinematic gait
i
; formula for this set of equations is:

k = (Sn E’ 5: .83 a+a/2» 3*3/2, '373/29 'a+a/2s 6: "6’ 6‘ "6’ 3/41
B-1/4,8-1/2)

(105)

with this set of gait parameters,if the variable a is a sufficiently large

pesitive number, then the stability margin is determined by

. s¥(G)=f,=£, =8-} (106)

R T D R T RS AR L
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The k given by (105) is not unigue since if Acp4 = ZA3 and

Acpz = 8Qq then f3 and fé are unchanged. Siuce gait 1234 is a reflection

oI gait 1432 about a longitudinal axis, (106) applies to both gaits.

Wep i R SN S AN

Gait 1324
i For gait 1324:
flz %(Y Y-cp*Zq;,,+ZB—l } (107)
f = l + +4 -2q -1 (108
27 72 | Yityp ty i )
1
£y = 2< Y374yt 2, 2B x> (109)
1
f4—2<1+Y4cp4Zcpzl} (110)
1
1
f6-»2< ‘Y+Y+q12&p> (112)
i = 1 / - ¢+253 (113)
772 TR
1
fo= 3 ( Y, + -2 > (114)

The corresponding unique optimum kinematic gait formula is:

k = (8888 a+B/2,2+8/2,a+8/2, -a+B/2, -a+R/2, -5, 4 -6 1/2,8-1/2,8B)

{115)
With this formula, if the variable a is sufficiently large and positive,

* = = = = = -
s (G)--f]L f4 fs f8 8-1 (116)
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